Model-free and model-based reinforcement learning are two ends of a spectrum. Learning a good policy without a dynamic model can be prohibitively expensive. Learning the dynamic model of a system can reduce the cost of learning the policy, but it can also introduce bias if it is not accurate. We propose a middle ground where instead of the transition model, the sensitivity of the trajectories with respect to the perturbation of the parameters is learned. This allows us to predict the local behavior of the physical system around a set of nominal policies without knowing the actual model. We assay our method on a custom-built physical robot in extensive experiments and show the feasibility of the approach in practice. We investigate potential challenges when applying our method to physical systems and propose solutions to each of them.
翻译:无模型和基于模型的强化学习是两端的光谱。 学习没有动态模型的良好政策可能费用极高。 学习一个系统的动态模型可以降低学习该政策的成本, 但是如果它不准确, 也可以引入偏见。 我们提出一个中间点, 而不是过渡模型, 轨迹对参数扰动的敏感度。 这使我们能够预测物理系统在一套名义政策周围的当地行为, 而不了解实际模式。 我们在广泛的实验中用定制的物理机器人来分析我们的方法, 并展示该方法的实际可行性。 我们在应用物理系统的方法时, 调查潜在的挑战, 并为每个系统提出解决方案 。