Optimizing and maintaining up-to-date API documentation is a challenging problem for evolving OpenAPIs. In this poster, we propose a data-driven continuous optimization solution and multilingual SDK generation scheme to improve the comprehensibility of API documentation. We compute the correlation between API integrity and API trial success rate. Based on this, we partition the API to ensure that each API has a correct optimization direction. Then, we propose a fine-grained(i.e., parameter level) continuous optimization solution to annotate problems in API documents in real-time. Based on the above resolutions, we can provide theoretical analysis and support for the optimization and management of API documents. Finally, we explore the crucial challenges of OpenAPIs and introduce a tailored solution, TeaDSL, a multi-language SDK solution for all OpenAPI gateways. TeaDSL is a domain-specific language that expresses OpenAPI gateways, generating SDKs, code samples, and test cases. The experiments evaluated on the online system show that this work's approach significantly improves the user experience of learning OpenAPIs.
翻译:优化和维护最新的API文档是发展中的OpenAPI们面临的一个具有挑战性的问题。在本篇海报中,我们提出了基于数据驱动的连续优化解决方案和多语言SDK生成方案,以提高API文档的可理解性。我们计算API完整性与API试用成功率之间的相关性。基于此,我们将API分区,以确保每个API都有正确的优化方向。然后,我们提出了一个细粒度(即参数级别)的连续优化解决方案,以实时注释API文档中的问题。基于以上解决方案,我们可以为API文档的优化和管理提供理论分析和支持。最后,我们探索了OpenAPI的重要挑战,并介绍了一个量身定制的解决方案TeaDSL,一个适用于所有OpenAPI网关的多语言SDK解决方案。TeaDSL是一个领域特定的语言,表达OpenAPI网关,生成SDK、代码示例和测试用例。在在线系统上进行的实验证明,本文的方法显著提高了学习OpenAPI的用户体验。