This paper presents a novel framework to recover \emph{detailed} avatar from a single image. It is a challenging task due to factors such as variations in human shapes, body poses, texture, and viewpoints. Prior methods typically attempt to recover the human body shape using a parametric-based template that lacks the surface details. As such resulting body shape appears to be without clothing. In this paper, we propose a novel learning-based framework that combines the robustness of the parametric model with the flexibility of free-form 3D deformation. We use the deep neural networks to refine the 3D shape in a Hierarchical Mesh Deformation (HMD) framework, utilizing the constraints from body joints, silhouettes, and per-pixel shading information. Our method can restore detailed human body shapes with complete textures beyond skinned models. Experiments demonstrate that our method has outperformed previous state-of-the-art approaches, achieving better accuracy in terms of both 2D IoU number and 3D metric distance.
翻译:本文提出了一个从单一图像中恢复 emph{ detailed} avatar 的新框架。 这是一个具有挑战性的任务, 原因包括人体形状、 身体姿势、 纹理和视角的变化等。 通常, 先前的方法通常会试图使用没有表面细节的参数模板来恢复人体形状。 由此得出的身体形状似乎没有衣服。 在本文中, 我们提出了一个基于学习的新框架, 将参数模型的坚固性与自由形状 3D 变形的灵活性结合起来。 我们利用深神经网络来完善高层次的Msh变形( HMD) 框架中的 3D 形状, 利用来自身体连接、 双光影和 单像素阴影信息的制约。 我们的方法可以用全的纹理来恢复人体形状。 实验表明, 我们的方法已经超越了先前的状态方法, 在 2D IoU 码和 3D 度距离方面都实现了更高的准确性 。