It is known that each word of length $n$ contains at most $n+1$ distinct palindromes. A finite rich word is a word with maximal number of palindromic factors. The definition of palindromic richness can be naturally extended to infinite words. Sturmian words and Rote complementary symmetric sequences form two classes of binary rich words, while episturmian words and words coding symmetric $d$-interval exchange transformations give us other examples on larger alphabets. In this paper we look for morphisms of the free monoid, which allow us to construct new rich words from already known rich words. We focus on morphisms in Class $P_{ret}$. This class contains morphisms injective on the alphabet and satisfying a particular palindromicity property: for every morphism $\varphi$ in the class there exists a palindrome $w$ such that $\varphi(a)w$ is a first complete return word to $w$ for each letter $a$. We characterize $P_{ret}$ morphisms which preserve richness over a binary alphabet. We also study marked $P_{ret}$ morphisms acting on alphabets with more letters. In particular we show that every Arnoux-Rauzy morphism is conjugated to a morphism in Class $P_{ret}$ and that it preserves richness.
翻译:众所周知, 美元长度的每个单词都包含以美元+1美元为单位的截然不同的平面体。 有限的丰富单词是一个有最大数目的平坦因素的单词。 平坦的丰富性的定义可以自然地扩展到无限的单词。 平坦的单词和罗特互补的对称序列构成两种二进制丰富的单词, 而对称的单词和对称的单词的对称美元- 隔流汇率转换给我们提供了较大字母上的其他例子 。 在这张纸里, 我们寻找的是自由单体的形态, 允许我们从已知的丰富单词中构建新的丰富单词。 我们关注的是以 $P ⁇ ret$为单位的变形。 这个类含有对字母的形容性, 并且满足一个特殊的情境属性属性: 对于每类中的每一变形的单词 $\varphi, 美元(a)w$是每字母的首个完整返回美元。 我们用每张平面的平面的平面字母来保持一个美的正态。