We present the first top-down ansatz for constructing lattice Boltzmann methods (LBM) in d dimensions. In particular, we construct a relaxation system (RS) for a given scalar, linear, d-dimensional advection-diffusion equation. Subsequently, the RS is linked to a d-dimensional discrete velocity Boltzmann model (DVBM) on the zeroth and first energy shell. Algebraic characterizations of the equilibrium, the moment space, and the collision operator are carried out. Further, a closed equation form of the RS expresses the added relaxation terms as prefactored higher order derivatives of the conserved quantity. Here, a generalized (2d+1)x(2d+1) RS is linked to a DdQ(2d+1) DVBM which, upon complete discretization, yields an LBM with second order accuracy in space and time. A rigorous convergence result for arbitrary scaling of the RS, the DVBM and conclusively also for the final LBM is proven. The top-down constructed LBM is numerically tested on multiple GPUs with smooth and non-smooth initial data in d=3 dimensions for several grid-normalized non-dimensional numbers.
翻译:我们为在 d 维维度中构建 lattice Boltzmann 方法提出了第一个自上而下自上而下 ansatz, 用于在 d 维度中构建 lattice Boltzmann 方法(LBM ) 。 特别是, 我们为给定的 scalar、 线性、 d- di- di- advction- dispilation- dispilation 等方程构建了一个放松系统( RS ) 。 随后, RS 与 零和第一个能量外壳的 d- di- di- expe- bm 模式( DVBM ) 相关联。 均衡、 瞬间空间和碰撞操作的代谢性特性被执行。 此外, RS 的封闭式方程式形式表示附加的放松条件, 是作为受保护量的预设更高阶梯级衍生物。 这里, 通用的(2d+1) x (2d+1) RS RS RS) RS RS 和 DVBM 链接到 DVBM 的 DVBM, 在 初始数中, 的多个中以数字 。