In the context of neural machine translation, data augmentation (DA) techniques may be used for generating additional training samples when the available parallel data are scarce. Many DA approaches aim at expanding the support of the empirical data distribution by generating new sentence pairs that contain infrequent words, thus making it closer to the true data distribution of parallel sentences. In this paper, we propose to follow a completely different approach and present a multi-task DA approach in which we generate new sentence pairs with transformations, such as reversing the order of the target sentence, which produce unfluent target sentences. During training, these augmented sentences are used as auxiliary tasks in a multi-task framework with the aim of providing new contexts where the target prefix is not informative enough to predict the next word. This strengthens the encoder and forces the decoder to pay more attention to the source representations of the encoder. Experiments carried out on six low-resource translation tasks show consistent improvements over the baseline and over DA methods aiming at extending the support of the empirical data distribution. The systems trained with our approach rely more on the source tokens, are more robust against domain shift and suffer less hallucinations.
翻译:在神经机翻译方面,当现有平行数据稀少时,数据增强(DA)技术可用于生成更多的培训样本。许多DA方法的目的是通过产生含有不常用词的新句配对,扩大对经验数据分布的支持,从而使其更接近平行句的真正数据分布。在本文件中,我们提议采取完全不同的方法,提出多任务DA方法,产生带有变换的新句配对,例如改变目标句的顺序,从而产生不流利的目标句。在培训期间,这些增加的句子被用作多任务框架中的辅助任务,目的是提供新的环境,使目标前缀没有足够的信息来预测下一个词。这加强了编码器,迫使解码器更多地注意编码器的来源表达。在六个低资源翻译任务上进行的实验表明,基线和DA方法的不断改进,目的是扩大经验数据分布的支持。在培训这些系统时,我们的方法更多地依靠源符号,因此更加可靠地防止域转移,减少幻象。