In this paper we analyze the error as well for the semi-discretization as the full discretization of a time-dependent convection-diffusion problem. We use for the discretization in space the local discontinuous Galerkin (LDG) method on a class of layer-adapted meshes including Shishkin-type and Bakhvalov-type meshes and the implicit $\theta$-scheme in time. For piecewise tensor-product polynomials of degree $k$ we obtain uniform or almost uniform error estimates with respect to space of order $k+1/2$ in some energy norm and optimal error estimates with respect to time. Our analysis is based on careful approximation error estimates for the Ritz projection related to the stationary problem on the anisotropic meshes used. We discuss also improved estimates in the one-dimensional case and the use of a discontinuous Galekin discretization in time. Numerical experiments are given to support our theoretical results.
翻译:在本文中,我们分析半分解的错误,将半分解作为时间依赖的对流扩散问题的完全分解。我们在空间的分解中使用了对一层层适应的模细类(包括Shishkin型和Bakhvalov型模贝)和隐含的美元-Scheme)的局部不连续的Galerkin(LDG)法,对单向微粒产品多级价($k$)的半分解法进行了分析。对于一些能源标准中1/2美元的订单空间和时间的最佳误差估计,我们得到了统一或几乎一致的误差估计。我们的分析基于对与所使用厌食色片的固定问题有关的Ritz预测的审慎近似误差估计。我们还讨论了一维案例的改进估计值和对不连续的加勒金离散的及时使用。我们给出的数值实验是为了支持我们的理论结果。