A numerical scheme is presented for the solution of Fredholm second-kind boundary integral equations with right-hand sides that are singular at a finite set of boundary points. The boundaries themselves may be non-smooth. The scheme, which builds on recursively compressed inverse preconditioning (RCIP), is universal as it is independent of the nature of the singularities. Strong right-hand side singularities, such as $1/|r|^\alpha$ with $\alpha$ close to $1$, can be treated in full machine precision. Adaptive refinement is used only in the recursive construction of the preconditioner, leading to an optimal number of discretization points and superior stability in the solve phase. The performance of the scheme is illustrated via several numerical examples, including an application to an integral equation derived from the linearized BGKW kinetic equation for the steady Couette flow.


翻译:为了解决Fredholm第二类边界组合方程式,提出了一个数字方案,该方程式的右侧面在一定的边界点数上是单数的。边界本身可能是非平稳的。该方程式建立在递归压缩反先决条件(RCIP)的基础上,具有普遍性,因为它独立于奇数的性质。强大的右侧单方方方程式,如1美元/ ⁇ ⁇ ⁇ alpha$,接近1美元/ ⁇ alpha$,可以用完全的机器精确处理。适应性精细只用于前置装置的循环构建,导致解决方案阶段的离散点和超强稳定性达到最佳数量。该方程式的性能通过几个数字示例加以说明,包括用于从线性BGKW动量方程式衍生的组合方程式,用于稳定的库韦特流程。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
专知会员服务
50+阅读 · 2020年12月14日
自然语言处理顶会COLING2020最佳论文出炉!
专知会员服务
23+阅读 · 2020年12月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年5月5日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月31日
Arxiv
0+阅读 · 2021年3月30日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
自然语言处理顶会COLING2020最佳论文出炉!
专知会员服务
23+阅读 · 2020年12月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年5月5日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员