Text data are an important source of detailed information about social and political events. Automated systems parse large volumes of text data to infer or extract structured information that describes actors, actions, dates, times, and locations. One of these sub-tasks is geocoding: predicting the geographic coordinates associated with events or locations described by a given text. We present an end-to-end probabilistic model for geocoding text data. Additionally, we collect a novel data set for evaluating the performance of geocoding systems. We compare the model-based solution, called ELECTRo-map, to the current state-of-the-art open source system for geocoding texts for event data. Finally, we discuss the benefits of end-to-end model-based geocoding, including principled uncertainty estimation and the ability of these models to leverage contextual information.


翻译:文本数据是社会和政治事件详细信息的重要来源。 自动化系统分析大量文本数据,以推断或提取结构化信息, 描述行为者、 行动、 日期、 时间和地点。 这些子任务之一是地理编码: 预测与某一文本描述的事件或地点相关的地理坐标。 我们为地理编码文本数据提出了一个端到端的概率模型。 此外, 我们收集一套用于评价地理编码系统性能的新数据。 我们将模型为基础的解决方案, 称为 ELECTRo-map, 与当前最先进的事件数据地理编码文本开放源系统进行比较。 最后, 我们讨论了基于终端到终端模型的地理编码的好处, 包括原则不确定性估计和这些模型利用背景信息的能力。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
32+阅读 · 2021年6月12日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
ACL 2018 计算语言学协会接受论文列表
专知
3+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
ACL 2018 计算语言学协会接受论文列表
专知
3+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员