Object detection is a difficult downstream task in computer vision. For the on-board edge computing platforms, a giant model is difficult to achieve the real-time detection requirement. And, a lightweight model built from a large number of the depth-wise separable convolutional layers cannot achieve the sufficient accuracy. We introduce a new method, GSConv, to lighten the model but maintain the accuracy. The GSConv balances the model's accuracy and speed better. And, we provide a design paradigm, slim-neck, to achieve a higher computational cost-effectiveness of the detectors. In experiments, our method obtains state-of-the-art results (e.g. 70.9% mAP0.5 for the SO-DA10M at a speed of ~100FPS on a Tesla T4) compared with the original networks. Code will be open source.
翻译:在计算机视野中,检测对象是一项困难的下游任务。对于机边计算平台来说,巨型模型很难实现实时检测要求。 而且,从大量深度和可分离的相变层中建立的轻量模型不能达到足够的准确性。 我们引入了一种新的方法, 即 GSConv, 来减轻模型, 但要保持准确性。 GSConv 将模型的准确性和速度平衡得更好。 我们提供了一个设计范式, 薄颈, 以便提高探测器的计算成本效率。 在实验中, 我们的方法获得了最新的结果( 例如, 以Tesla T4 的速度~ 100FPS的速度为SO- DA10M, 速度为 Tesla T4 的速度为 ~ 100FPS ) 。 代码将是开放的源码 。