A graph drawn in a surface is a near-quadrangulation if the sum of the lengths of the faces different from 4-faces is bounded by a fixed constant. We leverage duality between colorings and flows to design an efficient algorithm for 3-precoloring-extension in near-quadrangulations of orientable surfaces. Furthermore, we use this duality to strengthen previously known sufficient conditions for 3-colorability of triangle-free graphs drawn in orientable surfaces.
翻译:在表面绘制的图图是一个近半的图,如果与四面相异的面孔的长度总和被固定的常数捆绑在一起。我们利用颜色和流动之间的双重性来设计一个有效的算法,用于在可调整方向的表面的近四面拉动中进行三色延伸。此外,我们利用这一双重性来加强以前已知的足够条件,使在可调整方向的表面绘制的无三角图解具有3色可乘性。</s>