The absorption of light by molecules in the atmosphere of Earth is a complication for ground-based observations of astrophysical objects. Comprehensive information on various molecular species is required to correct for this so called telluric absorption. We present a neural network autoencoder approach for extracting a telluric transmission spectrum from a large set of high-precision observed solar spectra from the HARPS-N radial velocity spectrograph. We accomplish this by reducing the data into a compressed representation, which allows us to unveil the underlying solar spectrum and simultaneously uncover the different modes of variation in the observed spectra relating to the absorption of $\mathrm{H_2O}$ and $\mathrm{O_2}$ in the atmosphere of Earth. We demonstrate how the extracted components can be used to remove $\mathrm{H_2O}$ and $\mathrm{O_2}$ tellurics in a validation observation with similar accuracy and at less computational expense than a synthetic approach with molecfit.
翻译:分子在地球大气层中吸收光是地面观测天体物理物体的一个复杂因素。 需要关于各种分子物种的全面信息来纠正这种所谓的透星体吸收。 我们提出一个神经网络自动编码器方法,从HARPS-N辐射速度光谱仪中从大量高精度观测到的太阳光谱中提取透星光谱。 我们通过将数据压缩成压缩的表示器来做到这一点,使我们能够揭示太阳光谱背后的光谱,同时发现所观测到的光谱中与地球大气中吸收$\mathrm{H_2O}和$\mathrm{O_2}有关的不同变化模式。 我们演示如何利用提取的部件在验证观测中以类似精确和计算成本低于以分子合成方法去除$\mathrm{H_2O}和$\mathrm{O_2}。 我们展示了如何使用提取的部件在验证观测中以类似精确和较少计算成本的计算方法去。