In this paper, we consider the uncertainty quantification problem for regression models. Specifically, we consider an individual calibration objective for characterizing the quantiles of the prediction model. While such an objective is well-motivated from downstream tasks such as newsvendor cost, the existing methods have been largely heuristic and lack of statistical guarantee in terms of individual calibration. We show via simple examples that the existing methods focusing on population-level calibration guarantees such as average calibration or sharpness can lead to harmful and unexpected results. We propose simple nonparametric calibration methods that are agnostic of the underlying prediction model and enjoy both computational efficiency and statistical consistency. Our approach enables a better understanding of the possibility of individual calibration, and we establish matching upper and lower bounds for the calibration error of our proposed methods. Technically, our analysis combines the nonparametric analysis with a covering number argument for parametric analysis, which advances the existing theoretical analyses in the literature of nonparametric density estimation and quantile bandit problems. Importantly, the nonparametric perspective sheds new theoretical insights into regression calibration in terms of the curse of dimensionality and reconciles the existing results on the impossibility of individual calibration. To our knowledge, we make the first effort to reach both individual calibration and finite-sample guarantee with minimal assumptions in terms of conformal prediction. Numerical experiments show the advantage of such a simple approach under various metrics, and also under covariates shift. We hope our work provides a simple benchmark and a starting point of theoretical ground for future research on regression calibration.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员