We consider constrained sampling problems in paid research studies or clinical trials. When qualified volunteers are more than the budget allowed, we recommend a D-optimal sampling strategy based on the optimal design theory and develop a constrained lift-one algorithm to find the optimal allocation. Unlike the literature which mainly dealt with linear models, our solution solves the constrained sampling problem under fairly general statistical models, including generalized linear models and multinomial logistic models, and with more general constraints. We justify theoretically the optimality of our sampling strategy and show by simulation studies and real world examples the advantages over simple random sampling and proportionally stratified sampling strategies.
翻译:在有偿研究或临床试验中,我们考虑有限的抽样问题。当合格志愿者超出预算允许的限度时,我们建议基于最佳设计理论的D-最佳抽样战略,并开发一个有限度的升降单算法以找到最佳分配。 与主要涉及线性模型的文献不同,我们的解决办法在相当一般性的统计模型下解决了有限的抽样问题,包括通用线性模型和多星级后勤模型,以及更普遍的制约因素。 我们从理论上证明我们的抽样战略是最佳的,我们通过模拟研究和真实世界的例子来说明简单随机抽样和比例分层抽样战略的优势。