Trajectory forecasting plays a pivotal role in the field of intelligent vehicles or social robots. Recent works focus on modeling spatial social impacts or temporal motion attentions, but neglect inherent properties of motions, i.e. moving trends and driving intentions. This paper proposes a context-free Hierarchical Motion Encoder-Decoder Network (HMNet) for vehicle trajectory prediction. HMNet first infers the hierarchical difference on motions to encode physically compliant patterns with high expressivity of moving trends and driving intentions. Then, a goal (endpoint)-embedded decoder hierarchically constructs multimodal predictions depending on the location-velocity-acceleration-related patterns. Besides, we present a modified social pooling module which considers certain motion properties to represent social interactions. HMNet enables to make the accurate, unimodal/multimodal and physically-socially-compliant prediction. Experiments on three public trajectory prediction datasets, i.e. NGSIM, HighD and Interaction show that our model achieves the state-of-the-art performance both quantitatively and qualitatively. We will release our code here: https://github.com/xuedashuai/HMNet.
翻译:智能飞行器或社会机器人领域的轨迹预测在智能飞行器或社会机器人领域发挥着关键作用。最近的工作重点是模拟空间社会影响或时间运动的注意,但忽视运动的固有特性,即移动趋势和驱动意图。本文件提议为车辆轨迹预测建立一个无背景的等级移动电动计算器-Decoder-Decoder网络(HMNet ) 。HMNet首先推断出在将物理合规模式与移动趋势和驾驶意图高度直观化地编码的动作上的等级差异。随后,一个目标(端点)形成分层分层,根据位置-速度加速相关模式,构建多式联运预测。此外,我们提出了一个经过修改的社会集合模块,该模块将考虑某些运动特性以代表社会互动。 HMNet能够做出准确、单式/多式和符合身体-社会预测。关于三个公共轨迹预测数据集的实验,即NGSIM、高D和互动实验显示,我们的模型在定量和定性两方面都达到了状态-艺术性表现。我们将在这里发布我们的代码: https://gibthus/humax。