The prevailing maximum likelihood estimators for inferring power law models from rank-frequency data are biased. The source of this bias is an inappropriate likelihood function. The correct likelihood function is derived and shown to be computationally intractable. A more computationally efficient method of approximate Bayesian computation (ABC) is explored. This method is shown to have less bias for data generated from idealised rank-frequency Zipfian distributions. However, the existing estimators and the ABC estimator described here assume that words are drawn from a simple probability distribution, while language is a much more complex process. We show that this false assumption leads to continued biases when applying any of these methods to natural language to estimate Zipf exponents. We recommend that researchers instead use graphical methods such as ordinary least squares to investigate empirical power laws in natural language.
翻译:从普通频率数据推算权力法模型的通用最大概率估计值存在偏差。 这种偏差的来源是一个不适当的概率函数。 正确的概率函数是衍生出来的, 并显示是难以计算性的。 探索一种更符合计算效率的贝叶斯计算方法( ABC ) 。 这种方法对从理想的等级频率Zipfian分布中生成的数据的偏差较小。 但是, 此处描述的现有估计值和ABC估计值假定, 单词是从简单的概率分布中提取的, 而语言则是一个复杂得多的过程。 我们表明, 在对自然语言应用任何这些方法来估计Zipf 引文时, 这种假假设会导致持续的偏差。 我们建议研究人员使用图形方法, 如普通的最小方形, 来调查自然语言中的经验力定律 。