Regression discontinuity design models are widely used for the assessment of treatment effects in psychology, econometrics and biomedicine, specifically in situations where treatment is assigned to an individual based on their characteristics (e.g. scholarship is allocated based on merit) instead of being allocated randomly, as is the case, for example, in randomized clinical trials. Popular methods that have been largely employed till date for estimation of such treatment effects suffer from slow rates of convergence (i.e. slower than $\sqrt{n}$). In this paper, we present a new model and method that allows estimation of the treatment effect at $\sqrt{n}$ rate in the presence of fairly general forms of confoundedness. Moreover, we show that our estimator is also semi-parametrically efficient in certain situations. We analyze two real datasets via our method and compare our results with those obtained by using previous approaches. We conclude this paper with a discussion on some possible extensions of our method.


翻译:在评估心理学、计量经济学和生物医学的治疗效果时,广泛使用回归性不连续性设计模型,特别是在根据个人特点(例如,奖学金是根据成绩分配的)分配治疗结果的情况下,而不是像随机临床试验那样随机分配治疗结果,例如,随机临床试验的情况就是如此。迄今为止用于估计这种治疗效果的流行方法的趋同率较慢(即比美元慢,低于美元)。在本文中,我们提出了一个新的模型和方法,以便在存在相当一般的共生形式的情况下,可以估计以$/sqrt{n}的速率治疗效果。此外,我们还表明,在某些情况下,我们的估计结果也是半对称效率的。我们通过我们的方法分析了两种真实的数据集,并将我们的结果与以前采用的方法取得的结果进行比较。我们通过讨论我们方法的一些可能的扩展来完成这份文件。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年7月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
60+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年1月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年1月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员