Regression discontinuity design models are widely used for the assessment of treatment effects in psychology, econometrics and biomedicine, specifically in situations where treatment is assigned to an individual based on their characteristics (e.g. scholarship is allocated based on merit) instead of being allocated randomly, as is the case, for example, in randomized clinical trials. Popular methods that have been largely employed till date for estimation of such treatment effects suffer from slow rates of convergence (i.e. slower than $\sqrt{n}$). In this paper, we present a new model and method that allows estimation of the treatment effect at $\sqrt{n}$ rate in the presence of fairly general forms of confoundedness. Moreover, we show that our estimator is also semi-parametrically efficient in certain situations. We analyze two real datasets via our method and compare our results with those obtained by using previous approaches. We conclude this paper with a discussion on some possible extensions of our method.
翻译:在评估心理学、计量经济学和生物医学的治疗效果时,广泛使用回归性不连续性设计模型,特别是在根据个人特点(例如,奖学金是根据成绩分配的)分配治疗结果的情况下,而不是像随机临床试验那样随机分配治疗结果,例如,随机临床试验的情况就是如此。迄今为止用于估计这种治疗效果的流行方法的趋同率较慢(即比美元慢,低于美元)。在本文中,我们提出了一个新的模型和方法,以便在存在相当一般的共生形式的情况下,可以估计以$/sqrt{n}的速率治疗效果。此外,我们还表明,在某些情况下,我们的估计结果也是半对称效率的。我们通过我们的方法分析了两种真实的数据集,并将我们的结果与以前采用的方法取得的结果进行比较。我们通过讨论我们方法的一些可能的扩展来完成这份文件。