The well-known clustering algorithm of Miller, Peng, and Xu (SPAA 2013) is useful for many applications, including low-diameter decomposition and low-energy distributed algorithms. One nice property of their clustering, shown in previous work by Chang, Dani, Hayes, and Pettie (PODC 2020), is that distances in the cluster graph are rescaled versions of distances in the original graph, up to an $O(\log n)$ distortion factor and rounding issues. Minimizing this distortion factor is important for efficiency in computing the clustering, as well as in other applications. We prove that there exist graphs for which an $\Omega((\log n)^{1/3})$ distortion factor is necessary for any clustering. We also consider a class of nice graphs which we call uniformly bounded independence graphs. These include, for example, paths, lattice graphs, and "dense" unit disk graphs. For these graphs, we prove that clusterings of distortion $O(1)$ always exist, and moreover, we give new efficient distributed algorithms to construct them. This clustering is based on Voronoi cells centered at the vertices of a maximal independent set in a suitable power graph. Applications include low-energy simulation of distributed algorithms in the LOCAL, CONGEST, and RADIO-CONGEST models and efficient approximate solutions to distributed combinatorial optimization problems. We also investigate related lower bounds.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
23+阅读 · 2021年12月19日
Arxiv
14+阅读 · 2021年7月20日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
23+阅读 · 2021年12月19日
Arxiv
14+阅读 · 2021年7月20日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员