We present BERTGEN, a novel generative, decoder-only model which extends BERT by fusing multimodal and multilingual pretrained models VL-BERT and M-BERT, respectively. BERTGEN is auto-regressively trained for language generation tasks, namely image captioning, machine translation and multimodal machine translation, under a multitask setting. With a comprehensive set of evaluations, we show that BERTGEN outperforms many strong baselines across the tasks explored. We also show BERTGEN's ability for zero-shot language generation, where it exhibits competitive performance to supervised counterparts. Finally, we conduct ablation studies which demonstrate that BERTGEN substantially benefits from multi-tasking and effectively transfers relevant inductive biases from the pre-trained models.


翻译:我们介绍了BERTGEN,这是一个新型的基因化、解码器单一模型,它通过分别使用多式和多语种预先培训的VL-BERT模型和M-BERT模型来扩展BERT。BERTGEN是一个在多任务环境下,在语言生成任务,即图像字幕、机器翻译和多式机器翻译方面接受自动递增培训的模型。通过一套全面的评估,我们表明BERTGEN在所探讨的任务中有许多强有力的基线。我们还展示了BERTGEN在零发语言生成方面的能力,它在那里向受监督的对应方展示了竞争性的性能。最后,我们进行了通缩研究,表明BERTGEN从多任务和有效转移预先培训模式的相关诱导偏差中大有裨益。

0
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【资源】文本风格迁移相关资源汇总
专知
13+阅读 · 2020年7月11日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
已删除
将门创投
5+阅读 · 2017年8月15日
Arxiv
18+阅读 · 2020年10月9日
Arxiv
5+阅读 · 2019年4月21日
VIP会员
相关资讯
【资源】文本风格迁移相关资源汇总
专知
13+阅读 · 2020年7月11日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
已删除
将门创投
5+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员