We present a novel multiview canonical correlation analysis model based on a variational approach. This is the first nonlinear model that takes into account the available graph-based geometric constraints while being scalable for processing large scale datasets with multiple views. It is based on an autoencoder architecture with graph convolutional neural network layers. We experiment with our approach on classification, clustering, and recommendation tasks on real datasets. The algorithm is competitive with state-of-the-art multiview representation learning techniques.
翻译:我们提出了一个基于变式方法的新颖的多视图孔径相关分析模型。 这是第一种非线性模型, 它既考虑到基于图形的现有几何限制,又可以缩放, 用于处理具有多种视图的大型数据集。 它基于一个带有图形进化神经网络层的自动编码器结构。 我们实验我们对于真实数据集的分类、分组和建议任务的方法。 算法与最先进的多视图代表制学习技术具有竞争力 。