In this paper, we propose the tensor Noda iteration (NI) and its inexact version for solving the eigenvalue problem of a particular class of tensor pairs called generalized $\mathcal{M}$-tensor pairs. A generalized $\mathcal{M}$-tensor pair consists of a weakly irreducible nonnegative tensor and a nonsingular $\mathcal{M}$-tensor within a linear combination. It is shown that any generalized $\mathcal{M}$-tensor pair admits a unique positive generalized eigenvalue with a positive eigenvector. A modified tensor Noda iteration(MTNI) is developed for extending the Noda iteration for nonnegative matrix eigenproblems. In addition, the inexact generalized tensor Noda iteration method (IGTNI) and the generalized Newton-Noda iteration method (GNNI) are also introduced for more efficient implementations and faster convergence. Under a mild assumption on the initial values, the convergence of these algorithms is guaranteed. The efficiency of these algorithms is illustrated by numerical experiments.
翻译:在本文中,我们建议使用“抗拉诺达迭代(NI) ” 及其不精确版本来解决某类叫通用$\ mathcal{M}$- $- tensor 配对的超值问题。通用的 $\ mathcal{M} $- $- tensor 配对由微弱不可复制的不可复制的不可复制的无阴性发热器和非单单线组合的 $\ mathcal{M}- $- tensor (NI) 组成。显示,任何通用的 $\ mathcal{M} $- 10sor 配对都承认一种独特的正向正向的通用的乙质值。 正在开发一种经修改的 高压诺达重复( MTNI), 用于扩展非阴性矩阵的无阴性变异体变异体 。 此外, 超常的 超常超常的 超常 超常代代代谢法(IGnton- Noda 方法) 也用于更高效的实施和更快的融合。</s>