Emotion decoding using Electroencephalography (EEG)-based affective brain-computer interfaces (aBCIs) plays a crucial role in affective computing but is limited by challenges such as EEG's non-stationarity, individual variability, and the high cost of large labeled datasets. While deep learning methods are effective, they require extensive computational resources and large data volumes, limiting their practical application. To overcome these issues, we propose Manifold-based Domain Adaptation with Dynamic Distribution (M3D), a lightweight, non-deep transfer learning framework. M3D consists of four key modules: manifold feature transformation, dynamic distribution alignment, classifier learning, and ensemble learning. The data is mapped to an optimal Grassmann manifold space, enabling dynamic alignment of source and target domains. This alignment is designed to prioritize both marginal and conditional distributions, improving adaptation efficiency across diverse datasets. In classifier learning, the principle of structural risk minimization is applied to build robust classification models. Additionally, dynamic distribution alignment iteratively refines the classifier. The ensemble learning module aggregates classifiers from different optimization stages to leverage diversity and enhance prediction accuracy. M3D is evaluated on two EEG emotion recognition datasets using two validation protocols (cross-subject single-session and cross-subject cross-session) and a clinical EEG dataset for Major Depressive Disorder (MDD). Experimental results show that M3D outperforms traditional non-deep learning methods with a 4.47% average improvement and achieves deep learning-level performance with reduced data and computational requirements, demonstrating its potential for real-world aBCI applications.
翻译:暂无翻译