Interest in unmanned aerial system (UAS) powered solutions for 6G communication networks has grown immensely with the widespread availability of machine learning based autonomy modules and embedded graphical processing units (GPUs). While these technologies have revolutionized the possibilities of UAS solutions, designing an operable, robust autonomy framework for UAS remains a multi-faceted and difficult problem. In this work, we present our novel, modular framework for UAS autonomy, entitled MR-iFLY, and discuss how it may be extended to enable 6G swarm solutions. We begin by detailing the challenges associated with machine learning based UAS autonomy on resource constrained devices. Next, we describe in depth, how MR-iFLY's novel depth estimation and collision avoidance technology meets these challenges. Lastly, we describe the various evaluation criteria we have used to measure performance, show how our optimized machine vision components provide up to 15X speedup over baseline models and present a flight demonstration video of MR-iFLY's vision-based collision avoidance technology. We argue that these empirical results substantiate MR-iFLY as a candidate for use in reducing communication overhead between nodes in 6G communication swarms by providing standalone collision avoidance and navigation capabilities.
翻译:随着基于机械学习的自主模块和嵌入图形处理器(GPUs)的广泛提供,对无人驾驶航空系统(UAS)动力型6G通信网络解决方案的兴趣已大增。虽然这些技术使无人驾驶系统解决方案的可能性发生了革命性的变化,但设计一个可操作的、强有力的无人驾驶框架依然是一个多面和困难的问题。在这项工作中,我们介绍了我们称为MR-iFLY的无人驾驶航空系统自主的新型模块框架,并讨论了如何将其扩展以促成6G swarm解决方案。我们首先详细介绍了基于在资源限制装置方面无人机自主学习的机械学习所带来的挑战。我们深入地描述了MR-iFLY新的深度估计和避免碰撞技术是如何应对这些挑战的。最后,我们描述了我们用来测量性能的各种评价标准,展示了我们优化的机器视觉组件如何比基线模型提供高达15X的加速度,并展示MR-iFLY基于视觉的避免碰撞技术的飞行演示视频。我们说,这些经验结果证实了MR-iFLY是用于减少节点之间节点之间通信导航和避免碰撞能力的候选者。