Today, many systems use artificial intelligence (AI) to solve complex problems. While this often increases system effectiveness, developing a production-ready AI-based system is a difficult task. Thus, solid AI engineering practices are required to ensure the quality of the resulting system and to improve the development process. While several practices have already been proposed for the development of AI-based systems, detailed practical experiences of applying these practices are rare. In this paper, we aim to address this gap by collecting such experiences during a case study, namely the development of an autonomous stock trading system that uses machine learning functionality to invest in stocks. We selected 10 AI engineering practices from the literature and systematically applied them during development, with the goal to collect evidence about their applicability and effectiveness. Using structured field notes, we documented our experiences. Furthermore, we also used field notes to document challenges that occurred during the development, and the solutions we applied to overcome them. Afterwards, we analyzed the collected field notes, and evaluated how each practice improved the development. Lastly, we compared our evidence with existing literature. Most applied practices improved our system, albeit to varying extent, and we were able to overcome all major challenges. The qualitative results provide detailed accounts about 10 AI engineering practices, as well as challenges and solutions associated with such a project. Our experiences therefore enrich the emerging body of evidence in this field, which may be especially helpful for practitioner teams new to AI engineering.


翻译:今天,許多系統使用人工智慧 (AI) 解決複雜問題。雖然這通常可以提高系統效益,但開發一個投入生產的基於人工智慧的系統是很困難的任務。因此,需要穩固的AI工程實踐來確保所得系統的質量,並改善開發流程。雖然已經有多種開發基於AI的系統所提出的實踐,但詳細實際應用這些實踐的經驗是罕見的。在本文中,我們旨在通過一個案例研究來收集這些經驗,即開發一個使用機器學習功能在股票市場上進行投資的自主股票交易系統。我們從文獻中選擇了10種AI工程實踐,並在開發過程中系統應用它們,目的是收集有關它們的適用性和有效性的證據。我們使用結構化的現場筆記記錄了我們的經驗。此外,我們還使用現場筆記紀錄了在開發過程中出現的挑戰以及我們用來克服它們的解決方案。然後,我們分析了收集到的現場筆記,並評估了每種實踐對於開發的改善程度。最後,我們將證據與現有文獻進行了比較。大多數應用的實踐都對我們的系統進行了改進,儘管程度各不相同,但我們能夠克服所有重大挑戰。定性結果提供了有關10種AI工程實踐以及此類項目的挑戰和解決方案的詳細說明。因此,我們的經驗豐富了這一領域不斷增長的證據庫,這可能對初次接觸AI工程的實踐團隊特別有幫助。

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
《行为与认知机器人学》,241页pdf
专知会员服务
53+阅读 · 2021年4月11日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
22+阅读 · 2019年11月24日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
《行为与认知机器人学》,241页pdf
专知会员服务
53+阅读 · 2021年4月11日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员