We study a quantum switch that distributes maximally entangled multipartite states to sets of users. The entanglement switching process requires two steps: first, each user attempts to generate bipartite entanglement between itself and the switch; and second, the switch performs local operations and a measurement to create multipartite entanglement for a set of users. In this work, we study a simple variant of this system, wherein the switch has infinite memory and the links that connect the users to the switch are identical. Further, we assume that all quantum states, if generated successfully, have perfect fidelity and that decoherence is negligible. This problem formulation is of interest to several distributed quantum applications, while the technical aspects of this work result in new contributions within queueing theory. Via extensive use of Lyapunov functions, we derive necessary and sufficient conditions for the stability of the system and closed-form expressions for the switch capacity and the expected number of qubits in memory.
翻译:我们研究一个量子开关,该开关向用户群分配最紧密的交织多端状态。 缠绕开关进程需要两个步骤: 首先, 每个用户试图在自己和开关之间产生双方缠绕; 第二, 开关进行本地操作和测量, 为一组用户创建多方缠绕。 在这项工作中, 我们研究这个系统的简单变量, 其中开关有无限的内存, 连接用户到开关的链接是相同的。 此外, 我们假设所有量子状态, 如果生成成功, 都具有完全的忠诚性, 且不一致性微乎其微。 这个问题的配方对于几个分布量子应用程序来说是有意义的, 而这项工作的技术方面导致在排队理论中做出新的贡献。 广泛使用 Lyapunov 函数, 我们为系统的稳定创造必要和足够的条件, 以及开关容量和记忆中预期的qubits数目的封闭式表达方式。