Robotic manipulation tasks, such as wiping with a soft sponge, require control from multiple rich sensory modalities. Human-robot interaction, aimed at teaching robots, is difficult in this setting as there is potential for mismatch between human and machine comprehension of the rich data streams. We treat the task of interpretable learning from demonstration as an optimisation problem over a probabilistic generative model. To account for the high-dimensionality of the data, a high-capacity neural network is chosen to represent the model. The latent variables in this model are explicitly aligned with high-level notions and concepts that are manifested in a set of demonstrations. We show that such alignment is best achieved through the use of labels from the end user, in an appropriately restricted vocabulary, in contrast to the conventional approach of the designer picking a prior over the latent variables. Our approach is evaluated in the context of two table-top robot manipulation tasks performed by a PR2 robot -- that of dabbing liquids with a sponge (forcefully pressing a sponge and moving it along a surface) and pouring between different containers. The robot provides visual information, arm joint positions and arm joint efforts. We have made videos of the tasks and data available - see supplementary materials at: https://sites.google.com/view/weak-label-lfd.


翻译:机器人操作任务,例如用软海绵擦拭软海绵,需要多种丰富的感官模式来控制。 人类- 机器人互动,旨在教授机器人,在这种环境下是困难的,因为人类和机器对丰富数据流的理解可能不匹配。 我们把从演示中进行可解释的学习的任务视为对概率基因模型的优化问题。 为说明数据的高度维度,选择了一个高容量的神经网络来代表模型。 这个模型的潜伏变量与一组演示中展示的高层次概念和概念明确一致。 我们表明,通过使用终端用户的标签,在适当限制的词汇中,与设计者对潜在变量进行选择的传统方法相比,实现这种匹配的最佳方式。 我们的方法是在由PL2机器人执行的两种桌面机器人操作任务的背景下进行评估的,即用海绵(强制按下海绵并移动海绵)浸泡液体和在不同容器之间浇水。 机器人提供了视觉信息, 联合武器位置和手臂的词汇, 与设计者对潜在变量的常规方法形成对照。 我们做了两个桌面机器人操作的视频: http/ http:// labals

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
专知会员服务
18+阅读 · 2020年9月6日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员