PPSZ, for long time the fastest known algorithm for $k$-SAT, works by going through the variables of the input formula in random order; each variable is then set randomly to $0$ or $1$, unless the correct value can be inferred by an efficiently implementable rule (like small-width resolution; or being implied by a small set of clauses). We show that PPSZ performs exponentially better than previously known, for all $k \geq 3$. For Unique-$3$-SAT we bound its running time by $O(1.306973^{n})$, which is somewhat better than the algorithm of Hansen, Kaplan, Zamir, and Zwick, which runs in time $O(1.306995^n)$. Before that, the best known upper bound for Unique-$3$-SAT was $O(1.3070319^n)$. All improvements are achieved without changing the original PPSZ. The core idea is to pretend that PPSZ does not process the variables in uniformly random order, but according to a carefully designed distribution. We write "pretend" since this can be done without any actual change to the algorithm.


翻译:PPSZ是长期以来已知的美元-SAT的最快算法,它以随机顺序通过输入公式的变量进行计算;然后,每个变量随机地设定为0美元或1美元,除非正确值可以通过高效执行规则(如小宽分辨率,或由一组小条款暗含)推断出来。我们显示,PPSZ在全部美元/克(3美元)方面表现的指数比先前已知的要好。对于Unique-3美元,我们将其运行时间约束在O(1.306973 ⁇ n)美元上,这比Hansen、Kaplan、Zamir和Zwick的算法略好一些,后者的算法运行时间为0.306995美元。在此之前,已知的Unique-美元-美元-SAT的上限是$(1.3070319元)美元。所有改进都是在不改变原PPSZ的情况下实现的。核心想法是假装PPSZ不按统一的随机顺序处理变量,而是按照仔细设计的分布进行。我们写“prependendend ” 之后, 任何这种算出“ pretendendendendendendend ” 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
The Fragility of Optimized Bandit Algorithms
Arxiv
0+阅读 · 2022年9月15日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员