Massive machine type communication (mMTC) hasattracted new coding schemes optimized for reliable short mes-sage transmission. In this paper, a novel deep learning basednear-orthogonal superposition (NOS) coding scheme is proposedfor reliable transmission of short messages in the additive whiteGaussian noise (AWGN) channel for mMTC applications. Sim-ilar to recent hyper-dimensional modulation (HDM), the NOSencoder spreads the information bits to multiple near-orthogonalhigh dimensional vectors to be combined (superimposed) into asingle vector for transmission. The NOS decoder first estimatesthe information vectors and then performs a cyclic redundancycheck (CRC)-assistedK-best tree-search algorithm to furtherreduce the packet error rate. The proposed NOS encoder anddecoder are deep neural networks (DNNs) jointly trained asan auto-encoder and decoder pair to learn a new NOS codingscheme with near-orthogonal codewords. Simulation results showthe proposed deep learning-based NOS scheme outperformsHDM and Polar code with CRC-aided list decoding for short(32-bit) message transmission.
翻译:大型机器类型通信( MMTC) 吸引了最优化的新型编码方案, 用于可靠的短中间传感器传输。 在本文中, 提出了一个新的基于深深学习的基于近正方的叠加定位( NOS) 编码方案, 用于在添加的白色Gaussian噪音( AWGN) 频道中可靠传输短信息, 用于 mMMTC 应用。 拟议的NOS 编码器和脱coder是深层神经网络, 作为自动编码器和解码配对, 以学习一种以 NOS 为基的、 与近正向代词的传导相合并( 超加) 的多个近正方维矢。 NOS 解码首先估计信息矢量, 然后进行循环冗余检查( CRC) 辅助的K 最佳树搜索算法, 以进一步降低包错误率。 拟议的 NOS 编码和解码器是作为自动编码和解码联合训练的深神经网络( DNNS ), 以便学习一种与近向近方位调调调的新型NOS 解码传输系统。 IMADDM 和 的极地数据格式显示程序。