The VT and Helberg codes, both in binary and non-binary forms, stand as elegant solutions for rectifying insertion and deletion errors. In this paper we consider the quaternary versions of these codes. It is well known that many optimal binary non-linear codes like Kerdock and Prepreta can be depicted as Gray images (isometry) of codes defined over $\mathbb{Z}_4$. Thus a natural question arises: Can we find similar maps between quaternary and binary spaces which gives interesting properties when applied to the VT and Helberg codes. We found several such maps called Naisargik (natural) maps and we study the images of quaternary VT and Helberg codes under these maps. Naisargik and inverse Naisargik images gives interesting error-correcting properties for VT and Helberg codes. If two Naisargik images of VT code generates an intersecting one deletion sphere, then the images holds the same weights. A quaternary Helberg code designed to correct $s$ deletions can effectively rectify $s+1$ deletion errors when considering its Naisargik image, and $s$-deletion correcting binary Helberg code can corrects $\lfloor\frac{s}{2}\rfloor$ errors with inverse Naisargik image.
翻译:暂无翻译