Prompt-tuning has received attention as an efficient tuning method in the language domain, i.e., tuning a prompt that is a few tokens long, while keeping the large language model frozen, yet achieving comparable performance with conventional fine-tuning. Considering the emerging privacy concerns with language models, we initiate the study of privacy leakage in the setting of prompt-tuning. We first describe a real-world email service pipeline to provide customized output for various users via prompt-tuning. Then we propose a novel privacy attack framework to infer users' private information by exploiting the prompt module with user-specific signals. We conduct a comprehensive privacy evaluation on the target pipeline to demonstrate the potential leakage from prompt-tuning. The results also demonstrate the effectiveness of the proposed attack.
翻译:-
论提示调整语言模型是否确保隐私?
翻译后的摘要:
使用提示调整已被视为语言领域中的一种高效调整方法,即在保持大型语言模型冻结的情况下调整长度为几个标记的提示,同时实现与传统微调相当的性能。考虑到语言模型存在的隐私问题,本文着重研究提示调整中的隐私泄漏问题。我们首先描述一种实际的电子邮件服务管道,通过提示调整为各种用户提供定制的输出。然后,我们提出了一种新的隐私攻击框架,通过利用提示模块和用户特定信号来推断用户的私人信息。我们对目标管道进行了全面的隐私评估,以证明提示调整可能存在的泄漏问题。结果还证明了所提出攻击的有效性。