Measuring perceptual color differences (CDs) is of great importance in modern smartphone photography. Despite the long history, most CD measures have been constrained by psychophysical data of homogeneous color patches or a limited number of simplistic natural photographic images. It is thus questionable whether existing CD measures generalize in the age of smartphone photography characterized by greater content complexities and learning-based image signal processors. In this paper, we put together so far the largest image dataset for perceptual CD assessment, in which the photographic images are 1) captured by six flagship smartphones, 2) altered by Photoshop, 3) post-processed by built-in filters of the smartphones, and 4) reproduced with incorrect color profiles. We then conduct a large-scale psychophysical experiment to gather perceptual CDs of 30,000 image pairs in a carefully controlled laboratory environment. Based on the newly established dataset, we make one of the first attempts to construct an end-to-end learnable CD formula based on a lightweight neural network, as a generalization of several previous metrics. Extensive experiments demonstrate that the optimized formula outperforms 33 existing CD measures by a large margin, offers reasonable local CD maps without the use of dense supervision, generalizes well to homogeneous color patch data, and empirically behaves as a proper metric in the mathematical sense. Our dataset and code are publicly available at https://github.com/hellooks/CDNet.


翻译:感知色差度量对现代智能手机摄影非常重要。尽管有着漫长的历史,但多数色差度量被约束于同质颜色块的心理物理数据和数量有限的简单自然摄影图像。因此,现有色差度量是否适用于具有更高内容复杂性和基于学习的图像信号处理器的智能手机摄影时代,有所质疑。在本文中,我们编制了迄今为止最大的图像数据集,用于感知色差度评估,其中摄影图像由6款旗舰智能手机拍摄、Photoshop修改、内置过滤器后处理,并使用错误的色彩配置文件进行再现。然后,我们在精心控制的实验室环境中进行了大规模的心理物理实验,收集了3万对图像的感知色差度。基于新建立的数据集,我们首次尝试构建一种可端到端学习的感知色差公式,基于轻量级神经网络,作为多个先前度量标准的扩展。广泛的实验表明,优化的公式在33个现有的色差度量中表现出类似比较,提供合理的局部色差地图,无需密集监督,对同质颜色块数据具有良好的普适性,并在数学意义上表现为适当的量度。我们的数据集和代码公开在https://github.com/hellooks/CDNet。

0
下载
关闭预览

相关内容

【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
13+阅读 · 2019年12月27日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
13+阅读 · 2022年10月27日
Arxiv
38+阅读 · 2020年3月10日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
VIP会员
相关VIP内容
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
13+阅读 · 2019年12月27日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员