Decentralized bilevel optimization has garnered significant attention due to its critical role in solving large-scale machine learning problems. However, existing methods often rely on prior knowledge of problem parameters-such as smoothness, convexity, or communication network topologies-to determine appropriate stepsizes. In practice, these problem parameters are typically unavailable, leading to substantial manual effort for hyperparameter tuning. In this paper, we propose AdaSDBO, a fully problem-parameter-free algorithm for decentralized bilevel optimization with a single-loop structure. AdaSDBO leverages adaptive stepsizes based on cumulative gradient norms to update all variables simultaneously, dynamically adjusting its progress and eliminating the need for problem-specific hyperparameter tuning. Through rigorous theoretical analysis, we establish that AdaSDBO achieves a convergence rate of $\widetilde{\mathcal{O}}\left(\frac{1}{T}\right)$, matching the performance of well-tuned state-of-the-art methods up to polylogarithmic factors. Extensive numerical experiments demonstrate that AdaSDBO delivers competitive performance compared to existing decentralized bilevel optimization methods while exhibiting remarkable robustness across diverse stepsize configurations.
翻译:暂无翻译