Simple tabulation hashing dates back to Zobrist in 1970 and is defined as follows: Each key is viewed as $c$ characters from some alphabet $\Sigma$, we have $c$ fully random hash functions $h_0, \ldots, h_{c - 1} \colon \Sigma \to \{0, \ldots, 2^l - 1\}$, and a key $x = (x_0, \ldots, x_{c - 1})$ is hashed to $h(x) = h_0(x_0) \oplus \ldots \oplus h_{c - 1}(x_{c - 1})$ where $\oplus$ is the bitwise XOR operation. The previous results on tabulation hashing by P{\v a}tra{\c s}cu and Thorup~[J.ACM'11] and by Aamand et al.~[STOC'20] focused on proving Chernoff-style tail bounds on hash-based sums, e.g., the number keys hashing to a given value, for simple tabulation hashing, but their bounds do not cover the entire tail. Chaoses are random variables of the form $\sum a_{i_0, \ldots, i_{c - 1}} X_{i_0} \cdot \ldots \cdot X_{i_{c - 1}}$ where $X_i$ are independent random variables. Chaoses are a well-studied concept from probability theory, and tight analysis has been proven in several instances, e.g., when the independent random variables are standard Gaussian variables and when the independent random variables have logarithmically convex tails. We notice that hash-based sums of simple tabulation hashing can be seen as a sum of chaoses that are not independent. This motivates us to use techniques from the theory of chaoses to analyze hash-based sums of simple tabulation hashing. In this paper, we obtain bounds for all the moments of hash-based sums for simple tabulation hashing which are tight up to constants depending only on $c$. In contrast with the previous attempts, our approach will mostly be analytical and does not employ intricate combinatorial arguments. The improved analysis of simple tabulation hashing allows us to obtain bounds for the moments of hash-based sums for the mixed tabulation hashing introduced by Dahlgaard et al.~[FOCS'15].


翻译:简单的制表器 hashing hashing 追溯到 1970 年的 Zobrist, 定义如下 : 每把键都视为 $(x) $(x) = (x) = (x) =(x) =(x) =(x) =(x) =(x) =(x) =(x) =(x) =(x) =(x) =(x) =(o) =(x) =(o) =(o) =(c), h=(c) - (c) - 1}(c)\(c)\(g)\(g)\(g)\(g)\(g)\(x)\(g)\(to)\(x)\(x)\(x)\(x)\(x)\(x)\(x)\(x)\(x)))\(x(x)(x)))(x(x(x))(x(x(x(x))))(x(x(x(x))))(x(x)(x)(x)))(x(x(x))(x)(x)(x))))(x(x)))(x(x))))(x(x(x)))(x(x(x(x(x(x(x(x(x(x)))))))(x(x(x)))(x))(x(x(x))))(x(x(x(x)))))(x)))(x(x(x(x(x(x(x)))))))))))(x(x(x(x(x(x(x(x(x))))))))))))((x(x(x(x(x(((x(x(x))))))))))))))(((((((((x(((((((((x)))))))))

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月21日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员