Process mining supports the analysis of the actual behavior and performance of business processes using event logs. % such as, e.g., sales transactions recorded by an ERP system. An essential requirement is that every event in the log must be associated with a unique case identifier (e.g., the order ID of an order-to-cash process). In reality, however, this case identifier may not always be present, especially when logs are acquired from different systems or extracted from non-process-aware information systems. In such settings, the event log needs to be pre-processed by grouping events into cases -- an operation known as event correlation. Existing techniques for correlating events have worked with assumptions to make the problem tractable: some assume the generative processes to be acyclic, while others require heuristic information or user input. Moreover, %these techniques' primary assumption is that they abstract the log to activities and timestamps, and miss the opportunity to use data attributes. % In this paper, we lift these assumptions and propose a new technique called EC-SA-Data based on probabilistic optimization. The technique takes as inputs a sequence of timestamped events (the log without case IDs), a process model describing the underlying business process, and constraints over the event attributes. Our approach returns an event log in which every event is associated with a case identifier. The technique allows users to incorporate rules on process knowledge and data constraints flexibly. The approach minimizes the misalignment between the generated log and the input process model, maximizes the support of the given data constraints over the correlated log, and the variance between activity durations across cases. Our experiments with various real-life datasets show the advantages of our approach over the state of the art.


翻译:开采过程支持使用事件日志分析业务流程的实际行为和性能。% %, 例如, 由企业资源规划系统记录的销售交易记录。 一个必不可少的要求是, 日志中的每一事件都必须与一个独特的案件标识符相联系( 例如, 订单到现金过程的顺序代号 ) 。 然而, 事实上, 这个案例标识符可能并不总是存在, 特别是当日志是从不同系统获取的或从非进程认知信息系统中提取时。 在这样的背景下, 事件日志需要通过将事件分组成案件来预处理 -- -- 一种被称为事件关联的操作。 现有的关联事件技术与假设一起使问题可被牵引: 有些假设的突变进程必须是循环的, 而另一些则需要超时信息信息化信息或用户输入。 此外, % 这些技术的主要假设是, 它们从不同系统获取活动日志的日志, 并且错过了使用数据模型中的数据属性的机会。% 在本文中, 我们提升这些假设, 并提出了一种名为EC-SA- Data 的新技术, 其基础是精确性的变化性模型优化 。 技术是, 用于输入一个不包含 精确的 解释过程, 解释过程, 将 解释 解释 逻辑进程, 将 解释过程作为我们 解释过程, 解释 解释, 解释 记录过程 记录进程, 返回 返回, 返回 返回 返回 返回 返回 。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月7日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员