Process mining supports the analysis of the actual behavior and performance of business processes using event logs. % such as, e.g., sales transactions recorded by an ERP system. An essential requirement is that every event in the log must be associated with a unique case identifier (e.g., the order ID of an order-to-cash process). In reality, however, this case identifier may not always be present, especially when logs are acquired from different systems or extracted from non-process-aware information systems. In such settings, the event log needs to be pre-processed by grouping events into cases -- an operation known as event correlation. Existing techniques for correlating events have worked with assumptions to make the problem tractable: some assume the generative processes to be acyclic, while others require heuristic information or user input. Moreover, %these techniques' primary assumption is that they abstract the log to activities and timestamps, and miss the opportunity to use data attributes. % In this paper, we lift these assumptions and propose a new technique called EC-SA-Data based on probabilistic optimization. The technique takes as inputs a sequence of timestamped events (the log without case IDs), a process model describing the underlying business process, and constraints over the event attributes. Our approach returns an event log in which every event is associated with a case identifier. The technique allows users to incorporate rules on process knowledge and data constraints flexibly. The approach minimizes the misalignment between the generated log and the input process model, maximizes the support of the given data constraints over the correlated log, and the variance between activity durations across cases. Our experiments with various real-life datasets show the advantages of our approach over the state of the art.
翻译:开采过程支持使用事件日志分析业务流程的实际行为和性能。% %, 例如, 由企业资源规划系统记录的销售交易记录。 一个必不可少的要求是, 日志中的每一事件都必须与一个独特的案件标识符相联系( 例如, 订单到现金过程的顺序代号 ) 。 然而, 事实上, 这个案例标识符可能并不总是存在, 特别是当日志是从不同系统获取的或从非进程认知信息系统中提取时。 在这样的背景下, 事件日志需要通过将事件分组成案件来预处理 -- -- 一种被称为事件关联的操作。 现有的关联事件技术与假设一起使问题可被牵引: 有些假设的突变进程必须是循环的, 而另一些则需要超时信息信息化信息或用户输入。 此外, % 这些技术的主要假设是, 它们从不同系统获取活动日志的日志, 并且错过了使用数据模型中的数据属性的机会。% 在本文中, 我们提升这些假设, 并提出了一种名为EC-SA- Data 的新技术, 其基础是精确性的变化性模型优化 。 技术是, 用于输入一个不包含 精确的 解释过程, 解释过程, 将 解释 解释 逻辑进程, 将 解释过程作为我们 解释过程, 解释 解释, 解释 记录过程 记录进程, 返回 返回, 返回 返回 返回 返回 返回 。