User-based KNN recommender systems (UserKNN) utilize the rating data of a target user's k nearest neighbors in the recommendation process. This, however, increases the privacy risk of the neighbors since their rating data might be exposed to other users or malicious parties. To reduce this risk, existing work applies differential privacy by adding randomness to the neighbors' ratings, which reduces the accuracy of UserKNN. In this work, we introduce ReuseKNN, a novel privacy-aware recommender system. The main idea is to identify small but highly reusable neighborhoods so that (i) only a minimal set of users requires protection with differential privacy, and (ii) most users do not need to be protected with differential privacy, since they are only rarely exploited as neighbors. In our experiments on five diverse datasets, we make two key observations: Firstly, ReuseKNN requires significantly smaller neighborhoods, and thus, fewer neighbors need to be protected with differential privacy compared to traditional UserKNN. Secondly, despite the small neighborhoods, ReuseKNN outperforms UserKNN and a fully differentially private approach in terms of accuracy. Overall, ReuseKNN's recommendation process leads to significantly less privacy risk for users than in the case of UserKNN
翻译:基于用户的 KNN 推荐系统( UserKNNN) 使用目标用户最近的邻居的评级数据( UserKNNN), 使用目标用户最近的邻居的评级数据( UserKNNN) 。 但是,这增加了邻居的隐私风险,因为邻居的评级数据可能暴露于其他用户或恶意方。为了降低这一风险,现有工作采用差异隐私,在邻居的评级中添加随机性,从而降低用户KNN 的准确性。 在这项工作中,我们引入了“ReuseKNN ”, 这是一种新的隐私意识建议系统。 其主要想法是确定小型但高度可重复使用的邻居, 这样, (一) 只有最起码的一群用户才需要不同隐私的保护, (二) 大多数用户不需要不同隐私的隐私保护。 在五个不同的数据集的实验中, 我们提出两项关键意见: 首先, 重新使用KNNNN的建议需要大大小得多的邻居, 因此, 与传统的用户的隐私相比, 较少需要以不同的隐私保护邻居。 其次, 尽管小邻居, 重新使用KNNNN 和在准确性方面完全的私隐性做法导致大大的风险。