Stochastic gradient descent (SGD) has been demonstrated to generalize well in many deep learning applications. In practice, one often runs SGD with a geometrically decaying stepsize, i.e., a constant initial stepsize followed by multiple geometric stepsize decay, and uses the last iterate as the output. This kind of SGD is known to be nearly minimax optimal for classical finite-dimensional linear regression problems (Ge et al., 2019), and provably outperforms SGD with polynomially decaying stepsize in terms of the statistical minimax rates. However, a sharp analysis for the last iterate of SGD with decaying step size in the overparameterized setting is still open. In this paper, we provide problem-dependent analysis on the last iterate risk bounds of SGD with decaying stepsize, for (overparameterized) linear regression problems. In particular, for SGD with geometrically decaying stepsize (or tail geometrically decaying stepsize), we prove nearly matching upper and lower bounds on the excess risk. Our results demonstrate the generalization ability of SGD for a wide class of overparameterized problems, and can recover the minimax optimal results up to logarithmic factors in the classical regime. Moreover, we provide an excess risk lower bound for SGD with polynomially decaying stepsize and illustrate the advantage of geometrically decaying stepsize in an instance-wise manner, which complements the minimax rate comparison made in previous work.


翻译:在实践上,人们经常对SGD进行几何式衰减级步骤式的精确分析,也就是说,先不断的初始步骤式,然后是多个几何级级衰减,然后是最后一个迭代值作为输出。这种SGD已知对于典型的有限度线性回归问题(Ge等人,2019年)来说几乎是最小化的最佳方法,并且明显地优于SGD,在统计微缩率方面,多度递减步骤式的SGD。然而,对SGD上一级和跨度递减步骤式的精确分析仍然是开放的。在本文中,我们对SGDD最后一级风险范围进行的问题性分析,对传统有限度线性线性回归问题(Ge等人,2019年)来说几乎是最小度回归式的微度最佳最佳最佳最佳最佳最佳最佳方法。我们证明,SGDT的上下级递减步骤式系统在超度风险上与下级缩缩缩缩缩缩缩,我们的结果可以展示Squalalalalalimalalalalalalalalalalalalal la imalma 工作结果。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 用简单的梯度下降算法逃离鞍点
专知会员服务
23+阅读 · 2021年12月6日
专知会员服务
56+阅读 · 2021年4月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员