Active Directory (AD) is the default security management system for Windows domain networks. An AD environment naturally describes an attack graph where nodes represent computers/accounts/security groups, and edges represent existing accesses/known exploits that allow the attacker to gain access from one node to another. Motivated by practical AD use cases, we study a Stackelberg game between one attacker and one defender. There are multiple entry nodes for the attacker to choose from and there is a single target (Domain Admin). Every edge has a failure rate. The attacker chooses the attack path with the maximum success rate. The defender can block a limited number of edges (i.e., revoke accesses) from a set of blockable edges, limited by budget. The defender's aim is to minimize the attacker's success rate. We exploit the tree-likeness of practical AD graphs to design scalable algorithms. We propose two novel methods that combine theoretical fixed parameter analysis and practical optimisation techniques. For graphs with small tree widths, we propose a tree decomposition based dynamic program. We then propose a general method for converting tree decomposition based dynamic programs to reinforcement learning environments, which leads to an anytime algorithm that scales better, but loses the optimality guarantee. For graphs with small numbers of non-splitting paths (a parameter we invent specifically for AD graphs), we propose a kernelization technique that significantly downsizes the model, which is then solved via mixed-integer programming. Experimentally, our algorithms scale to handle synthetic AD graphs with tens of thousands of nodes.


翻译:活动目录 (AD) 是 Windows 域网的默认安全管理系统 。 一个 AD 环境自然会描述一个攻击图, 节点代表计算机/ 账户/ 安全组, 边缘代表现有的访问/ 已知开发, 使攻击者能够从一个节点进入另一个节点。 我们受实际的 AD 使用案例的驱动, 我们研究攻击者与一个捍卫者之间的Stackelberg游戏。 攻击者可以选择多个输入节点, 并且有一个单一的目标( Domain Admin ) 。 每个边缘都有一个失败率。 攻击者选择攻击路径, 以最大成功率代表计算机/ 账户/ 安全组。 边缘代表现有的访问/, 使攻击者能够从一个节点进入另一个节点进入另一个节点。 受预算限制。 捍卫者的目的是尽可能降低攻击者成功率。 我们利用一个实用的 Adggnorger 组合来设计可缩略算的算法。 我们建议两种新模式, 将理论固定参数分析与实际的优化精度技术结合起来。 对于小树宽度, 我们提议一个基于树的树分化的动态平整程序, 。 我们提议一个基于动态平流的平级程序, 将一个混合的平流的平级平级平级平级平比 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月10日
Arxiv
0+阅读 · 2023年2月7日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员