The study of adaptive data analysis examines how many statistical queries can be answered accurately using a fixed dataset while avoiding false discoveries (statistically inaccurate answers). In this paper, we tackle a question that precedes the field of study: Is data only valuable when it provides accurate answers to statistical queries? To answer this question, we use Stochastic Convex Optimization as a case study. In this model, algorithms are considered as analysts who query an estimate of the gradient of a noisy function at each iteration and move towards its minimizer. It is known that $O(1/\epsilon^2)$ examples can be used to minimize the objective function, but none of the existing methods depend on the accuracy of the estimated gradients along the trajectory. Therefore, we ask: How many samples are needed to minimize a noisy convex function if we require $\epsilon$-accurate estimates of $O(1/\epsilon^2)$ gradients? Or, might it be that inaccurate gradient estimates are \emph{necessary} for finding the minimum of a stochastic convex function at an optimal statistical rate? We provide two partial answers to this question. First, we show that a general analyst (queries that may be maliciously chosen) requires $\Omega(1/\epsilon^3)$ samples, ruling out the possibility of a foolproof mechanism. Second, we show that, under certain assumptions on the oracle, $\tilde \Omega(1/\epsilon^{2.5})$ samples are necessary for gradient descent to interact with the oracle. Our results are in contrast to classical bounds that show that $O(1/\epsilon^2)$ samples can optimize the population risk to an accuracy of $O(\epsilon)$, but with spurious gradients.


翻译:适应性数据分析研究用固定的数据集来准确解答多少统计问题, 避免错误的发现( 统计不准确的答案 ) 。 在本文中, 我们处理一个先于研究领域的问题 : 数据只有在提供准确的统计查询答案时才值吗? 为了回答这个问题, 我们用Stochastectic Convex 优化化作为案例研究。 在这个模型中, 算法被视为分析师, 谁在每次迭代中查询一个噪音函数的梯度估计值, 并转向其最小值 。 已知 $( 1/\ epsilon_ 2) 的示例可以用来最小化目标函数( O=1/ lipselom_ 2 ) 。 但是, 现有的方法没有一个取决于沿轨迹估计的梯度的准确性 。 因此, 我们需要多少样本来最大限度地减少一个响亮的 convex 函数 。 ( 1/\ exclonlon2) 梯度估计值 的梯度值? 或者说, 准确的梯度估计值是 。 ( =cread sweal serview) rodeal ex) exerview 。 ( we sudeal deal) rodude rodude) 。 我们提供一个最精确的答案 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月29日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员