The tensor product of one code endowed with the Hamming metric and one endowed with the rank metric is analyzed. This gives a code which naturally inherits the sum-rank metric. Specializing to the product of a cyclic code and a skew-cyclic code, the resulting code turns out to belong to the recently introduced family of cyclic-skew-cyclic. A group theoretical description of these codes is given, after investigating the semilinear isometries in the sum-rank metric. Finally, a generalization of the Roos and the Hartmann-Tzeng bounds for the sum rank-metric is established, as well as a new lower bound on the minimum distance of one of the two codes constituting the product code.
翻译:分析一个配有Hamming指标的代码和配有等级指标的代码的抗拉产物。这给出了一个自然继承总等级指标的代码。这个代码专门用于一个周期代码和一个扭曲周期代码的产物,由此形成的代码最终属于最近推出的循环-skew-周期体系。在用总等级标准对半线性异种进行了调查之后,对这些代码作了一组理论性描述。最后,确定了罗斯和哈特曼-赞格线对总等级标准的一般化,并对构成产品代码的两种代码之一的最低距离规定了新的较低约束。