Current out-of-distribution detection approaches usually present special requirements (e.g., collecting outlier data and hyperparameter validation) and produce side effects (classification accuracy drop and slow/inefficient inferences). Recently, entropic out-of-distribution detection has been proposed as a seamless approach (i.e., a solution that avoids all the previously mentioned drawbacks). The entropic out-of-distribution detection solution comprises the IsoMax loss for training and the entropic score for out-of-distribution detection. The IsoMax loss works as a SoftMax loss drop-in replacement because swapping the SoftMax loss with the IsoMax loss requires no changes in the model's architecture or training procedures/hyperparameters. In this paper, we propose to perform what we call an isometrization of the distances used in the IsoMax loss. Additionally, we propose to replace the entropic score with the minimum distance score. Our experiments showed that these simple modifications increase out-of-distribution detection performance while keeping the solution seamless. Code available at $\href{https://github.com/dlmacedo/entropic-out-of-distribution-detection}{\text{entropic out-of-distribution detection}}$.
翻译:目前的分配外检测方法通常具有特殊要求(例如,收集外部数据和超参数验证),并产生副作用(分类精度下降和缓慢/低效/低效推算)。最近,作为无缝方法(即避免上述所有弊端的一种解决办法),建议对分配外检测方法进行昆虫检测,包括用于培训的IsoMax损失和用于分配外检测的昆虫分数。IsoMax损失作为SoftMax损失的下降替换,因为将SoftMax损失与Isomax损失互换,不需要改变模型的结构或培训程序/机能参数。在本文件中,我们提议对IsoMax损失所使用的距离进行我们所称的计算。此外,我们提议用最小的距离分数来取代昆虫分。我们的实验表明,这些简单的修改增加了分配外检测的绩效,同时保持解决方案的无缝合性。