We study stochastic mean-field games among finite number of teams with large finite as well as infinite number of decision makers. For this class of games within static and dynamic settings, we establish the existence of a Nash equilibrium, and show that a Nash equilibrium exhibits exchangeability in the finite decision maker regime and symmetry in the infinite one. To arrive at these existence and structural theorems, we endow the set of randomized policies with a suitable topology under various decentralized information structures, which leads to the desired convexity and compactness of the set of randomized policies. Then, we establish the existence of a randomized Nash equilibrium that is exchangeable (not necessarily symmetric) among decision makers within each team for a general class of exchangeable stochastic games. As the number of decision makers within each team goes to infinity (that is for the mean-field game among teams), using a de Finetti representation theorem, we show the existence of a randomized Nash equilibrium that is symmetric (i.e., identical) among decision makers within each team and also independently randomized. Finally, we establish that a Nash equilibrium for a class of mean-field games among teams (which is symmetric) constitutes an approximate Nash equilibrium for the corresponding pre-limit (exchangeable) game among teams with large but finite number of decision makers.


翻译:我们研究数量有限、数量有限以及数量无限的决策者的有限团队之间的随机平均场游戏。 对于在静态和动态环境中的这种类型的游戏,我们建立纳什平衡,并表明纳什平衡在有限的决策人制度和无限的对称中表现出可互换性。为了实现这些存在和结构理论,我们将一套随机化政策放在各种分散信息结构下的适当地形学中,导致一套随机化政策的预期一致和紧凑性。然后,我们确定每个团队内决策者之间是否存在一种随机化的纳什平衡,这种平衡可以(不一定对称性)交换(不一定对称性),并显示每个团队内决策者之间在一般可互换的游戏类别中存在着可互换性(对称性),并表明,随着每个团队内决策者之间的决策人数目(即平均场游戏小组之间的平均场游戏组),我们用一种随机性平衡(比如)在每个团队内部决策人中确定一个可独立随机性游戏组之间的比例。最后,我们确定一个可自由性游戏组之间的比例。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月18日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员