Hippocampal place cells can encode spatial locations of an animal in physical or task-relevant spaces. We simulated place cell populations that encoded either Euclidean- or graph-based positions of a rat navigating to goal nodes in a maze with a graph topology, and used manifold learning methods such as UMAP and Autoencoders (AE) to analyze these neural population activities. The structure of the latent spaces learned by the AE reflects their true geometric structure, while PCA fails to do so and UMAP is less robust to noise. Our results support future applications of AE architectures to decipher the geometry of spatial encoding in the brain.
翻译:Hippocampal 位置单元格可以将动物在物理或任务相关空间的空间位置编码。 我们模拟了将老鼠在迷宫中用图示示示意表态瞄准节点的欧几里底或图形定位的细胞群,并使用了多种学习方法,如UMAP和Autoencoders(AE)来分析这些神经人口活动。 AE 所学的潜伏空间的结构反映了它们真实的几何结构,而五氯苯甲醚却没有这样做,而UMAP对噪音则不太强大。我们的结果支持了AE结构今后在大脑中解析空间编码的几何学应用。