This paper proposes a novel scheme to identify the authorship of a document based on handwritten input word images of an individual. Our approach is text-independent and does not place any restrictions on the size of the input word images under consideration. To begin with, we employ the SIFT algorithm to extract multiple key points at various levels of abstraction (comprising allograph, character, or combination of characters). These key points are then passed through a trained CNN network to generate feature maps corresponding to a convolution layer. However, owing to the scale corresponding to the SIFT key points, the size of a generated feature map may differ. As an alleviation to this issue, the histogram of gradients is applied on the feature map to produce a fixed representation. Typically, in a CNN, the number of filters of each convolution block increase depending on the depth of the network. Thus, extracting histogram features for each of the convolution feature map increase the dimension as well as the computational load. To address this aspect, we use an entropy-based method to learn the weights of the feature maps of a particular CNN layer during the training phase of our algorithm. The efficacy of our proposed system has been demonstrated on two publicly available databases namely CVL and IAM. We empirically show that the results obtained are promising when compared with previous works.
翻译:本文提出一个新方案, 以个人手写输入文字图像为基础, 确定文档的作者身份。 我们的方法是依赖文字, 不限制所考虑的输入文字图像的大小。 首先, 我们使用SIFT 算法, 在不同抽象层次( 包含所有图表、 字符或字符组合) 抽取多个关键点。 这些关键点随后通过受过训练的CNN网络传递, 以生成与卷变层相匹配的地貌地图。 但是, 由于与SIFT 关键点相对应的大小, 生成的地貌地图的大小可能有所不同。 作为解决这个问题的缓解措施, 在地貌图上应用梯度的直方图来生成固定的图像。 通常, 在CNN 中, 每个卷变区增加的过滤器数量取决于网络的深度。 因此, 提取每个卷变图的直图特征会增加其尺寸, 增加计算负荷的尺寸。 为了解决这个问题, 我们使用基于英特普基方法来学习特定CNN层次的地貌图的重量。 在培训阶段, 我们的SL 展示了我们先前的系统的有效性, 。