Image generation using diffusion can be controlled in multiple ways. In this paper, we systematically analyze the equations of modern generative diffusion networks to propose a framework, called MDP, that explains the design space of suitable manipulations. We identify 5 different manipulations, including intermediate latent, conditional embedding, cross attention maps, guidance, and predicted noise. We analyze the corresponding parameters of these manipulations and the manipulation schedule. We show that some previous editing methods fit nicely into our framework. Particularly, we identified one specific configuration as a new type of control by manipulating the predicted noise, which can perform higher-quality edits than previous work for a variety of local and global edits.


翻译:注意:英文单词、专有名词、缩略词等请保留原文不翻译。

0
下载
关闭预览

相关内容

【ICML2023】基于自然语言指令的受控文本生成
专知会员服务
28+阅读 · 2023年4月28日
基于等变扩散模型的三维分子生成
专知会员服务
8+阅读 · 2022年11月28日
生成扩散模型漫谈:一般框架之SDE篇
PaperWeekly
0+阅读 · 2022年8月14日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
黑白之道
19+阅读 · 2018年12月23日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
0+阅读 · 2023年5月18日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关VIP内容
【ICML2023】基于自然语言指令的受控文本生成
专知会员服务
28+阅读 · 2023年4月28日
基于等变扩散模型的三维分子生成
专知会员服务
8+阅读 · 2022年11月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员