In this work, we propose a method to learn multivariate probability distributions using sample path data from stochastic differential equations. Specifically, we consider temporally evolving probability distributions (e.g., those produced by integrating local or nonlocal Fokker-Planck equations). We analyze this evolution through machine learning assisted construction of a time-dependent mapping that takes a reference distribution (say, a Gaussian) to each and every instance of our evolving distribution. If the reference distribution is the initial condition of a Fokker-Planck equation, what we learn is the time-T map of the corresponding solution. Specifically, the learned map is a multivariate normalizing flow that deforms the support of the reference density to the support of each and every density snapshot in time. We demonstrate that this approach can approximate probability density function evolutions in time from observed sampled data for systems driven by both Brownian and L\'evy noise. We present examples with two- and three-dimensional, uni- and multimodal distributions to validate the method.
翻译:在这项工作中,我们提出一种方法,利用从随机差分方程的样本路径数据来学习多变概率分布。 具体地说, 我们考虑时间变化的概率分布( 例如,通过整合本地或非本地 Fokker- Planck 方程产生的概率分布) 。 我们通过机器学习来分析这一演变, 通过机器学习来构建一个基于时间的绘图, 该映射将参考分布( 例如, 高山) 到我们不断演变的分布的每个实例。 如果参考分布是Fokker- Planck 方程的初始条件, 我们所学的就是对应解决方案的时间- T 映射。 具体地说, 所学的地图是一个多变的正常流, 使引用密度的密度对支持在时间上的每一种和每一种密度截图的支持发生变形。 我们证明, 这种方法可以比照由布朗 和 L\' 微噪音驱动的系统所观察到的样本数据, 概率变化。 我们用二维和三维、 单维和多式分布的例子来验证方法。