Multi-view data refers to a setting where features are divided into feature sets, for example because they correspond to different sources. Stacked penalized logistic regression (StaPLR) is a recently introduced method that can be used for classification and automatically selecting the views that are most important for prediction. We show how this method can easily be extended to a setting where the data has a hierarchical multi-view structure. We apply StaPLR to Alzheimer's disease classification where different MRI measures have been calculated from three scan types: structural MRI, diffusion-weighted MRI, and resting-state fMRI. StaPLR can identify which scan types and which MRI measures are most important for classification, and it outperforms elastic net regression in classification performance.


翻译:多视图数据是指将特征分为特征集的设置,例如,由于这些特征与不同来源相对应。堆积式受限后勤回归(StaPLR)是最近采用的一种方法,可用于分类和自动选择对预测最重要的观点。我们表明这种方法如何很容易推广到数据具有分级多视图结构的设置。我们将StaPLR应用于阿尔茨海默氏病分类,从以下三种扫描类型计算出不同的MRI措施:结构MRI、扩散加权MRI和休息状态FMRI。SAPLR可以确定哪些扫描类型和哪些MRI措施对分类最为重要,在分类性能方面表现优于弹性净回归。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
机器学习可解释性工具箱XAI
专知
11+阅读 · 2019年2月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Field Extraction from Forms with Unlabeled Data
Arxiv
0+阅读 · 2021年10月8日
Multi-Label Learning with Label Enhancement
Arxiv
4+阅读 · 2019年4月16日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
机器学习可解释性工具箱XAI
专知
11+阅读 · 2019年2月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员