We study a parametric version of the Kannan-Lipton Orbit Problem for linear dynamical systems. We show decidability in the case of one parameter and Skolem-hardness with four or more parameters. More precisely, consider $M$ a d-dimensional square matrix whose entries are rational functions in one or more real variables. Given initial and target vectors $u,v \in \mathbb{Q}^d$, the parametrised point-to-point reachability problem asks whether there exist values of the parameters giving rise to a concrete matrix $N \in \mathbb{R}^{d\times d}$, and a positive integer $n$, such that $N^n u = v$. We show decidability in the case where $M$ depends only upon a single parameter, and we exhibit a reduction from the well-known Skolem problem for linear recurrence sequences, indicating intractability in the case of four or more parameters.
翻译:我们研究了线性动态系统Kannan-Lipton轨道问题的参数版本。 我们用四个或四个以上参数来显示一个参数的降解性和Skolem-hardity。 更准确地说, 考虑一个在一个或多个真实变量中输入合理函数的d- 维方矩阵。 鉴于初始矢量和目标矢量 $u, v\ mathbb ⁇ d$, 假设点到点的可达性问题, 问是否有参数值导致出现一个具体矩阵 $N\ in\mathbb{R ⁇ d\ times d}$和正整数 $0, 即$N ⁇ n u = v$。 在美元仅依赖单一参数的情况下, 我们显示的衰减性, 线性序列的已知斯kolem问题也有所减少, 表明四个或更多参数的可忽略性。