We propose a novel approach for comparing distributions whose supports do not necessarily lie on the same metric space. Unlike Gromov-Wasserstein (GW) distance which compares pairwise distances of elements from each distribution, we consider a method allowing to embed the metric measure spaces in a common Euclidean space and compute an optimal transport (OT) on the embedded distributions. This leads to what we call a sub-embedding robust Wasserstein (SERW) distance. Under some conditions, SERW is a distance that considers an OT distance of the (low-distorted) embedded distributions using a common metric. In addition to this novel proposal that generalizes several recent OT works, our contributions stand on several theoretical analyses: (i) we characterize the embedding spaces to define SERW distance for distribution alignment; (ii) we prove that SERW mimics almost the same properties of GW distance, and we give a cost relation between GW and SERW. The paper also provides some numerical illustrations of how SERW behaves on matching problems.
翻译:我们建议一种新颖的方法来比较支持并不一定在于同一计量空间的分布。 与Gromov- Wasserstein (GW) 距离相比,每个分布元素的对称距离不同, 我们考虑一种允许将计量空间嵌入共同的欧clidean空间的方法, 并在嵌入分布上计算一种最佳的迁移( OT ) 。 这导致我们称之为“ 强大的瓦瑟斯坦( SERW) 距离 ” 的子组合。 在某些条件下, SERW 是一个距离, 考虑( 低扭曲的) 嵌入分布使用通用度的OT距离 。 除了这一将最近几个OT 效果概括化的新建议之外, 我们的意见还体现在一些理论分析上:(一) 我们给嵌入空间定性为SERW 距离的定位, 用于分布协调;(二) 我们证明SERW 模拟几乎相同GW 距离的特性, 我们给出GW 和 SERW 之间的成本关系。 文件还提供了SERW 在匹配问题上如何表现的数字说明。