We introduce primed-PCA (pPCA), an extension of the recently proposed EigenGame algorithm for computing principal components in a large-scale setup. Our algorithm first runs EigenGame to get an approximation of the principal components, and then applies an exact PCA in the subspace they span. Since this subspace is of small dimension in any practical use of EigenGame, this second step is extremely cheap computationally. Nonetheless, it improves accuracy significantly for a given computational budget across datasets. In this setup, the purpose of EigenGame is to narrow down the search space, and prepare the data for the second step, an exact calculation. We show formally that pPCA improves upon EigenGame under very mild conditions, and we provide experimental validation on both synthetic and real large-scale datasets showing that it systematically translates to improved performance. In our experiments we achieve improvements in convergence speed by factors of 5-25 on the datasets of the original EigenGame paper.
翻译:我们引入了用于在大型设置中计算主要组件的最近提议的 EigenGame 算法( pPCA) 。 我们的算法首先运行 EigenGame, 以获得主要组件的近似值, 然后在它们所覆盖的子空间中应用精确的 CPA 。 由于这个子空间在EigenGame 的任何实际使用中都属于小尺寸, 第二步是极廉价的计算。 然而, 它大大提高了特定计算预算跨数据集的精确度。 在这个设置中, EigenGame 的目的是缩小搜索空间, 为第二步准备数据, 精确的计算。 我们正式显示 PPCA 在非常温和的条件下对 EigenGame 的改进, 我们提供合成和真实的大型数据集的实验性验证, 表明它能够系统地转换为改进性能。 在我们的实验中, 我们通过原始 EigenGame 纸的数据设置的5- 25 来提高趋同速度。