We introduce primed-PCA (pPCA), an extension of the recently proposed EigenGame algorithm for computing principal components in a large-scale setup. Our algorithm first runs EigenGame to get an approximation of the principal components, and then applies an exact PCA in the subspace they span. Since this subspace is of small dimension in any practical use of EigenGame, this second step is extremely cheap computationally. Nonetheless, it improves accuracy significantly for a given computational budget across datasets. In this setup, the purpose of EigenGame is to narrow down the search space, and prepare the data for the second step, an exact calculation. We show formally that pPCA improves upon EigenGame under very mild conditions, and we provide experimental validation on both synthetic and real large-scale datasets showing that it systematically translates to improved performance. In our experiments we achieve improvements in convergence speed by factors of 5-25 on the datasets of the original EigenGame paper.


翻译:我们引入了用于在大型设置中计算主要组件的最近提议的 EigenGame 算法( pPCA) 。 我们的算法首先运行 EigenGame, 以获得主要组件的近似值, 然后在它们所覆盖的子空间中应用精确的 CPA 。 由于这个子空间在EigenGame 的任何实际使用中都属于小尺寸, 第二步是极廉价的计算。 然而, 它大大提高了特定计算预算跨数据集的精确度。 在这个设置中, EigenGame 的目的是缩小搜索空间, 为第二步准备数据, 精确的计算。 我们正式显示 PPCA 在非常温和的条件下对 EigenGame 的改进, 我们提供合成和真实的大型数据集的实验性验证, 表明它能够系统地转换为改进性能。 在我们的实验中, 我们通过原始 EigenGame 纸的数据设置的5- 25 来提高趋同速度。

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
专知会员服务
161+阅读 · 2020年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
已删除
将门创投
4+阅读 · 2017年11月1日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月28日
Arxiv
0+阅读 · 2021年10月25日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Learning to Importance Sample in Primary Sample Space
Arxiv
6+阅读 · 2018年5月22日
Arxiv
5+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
专知会员服务
161+阅读 · 2020年1月16日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
已删除
将门创投
4+阅读 · 2017年11月1日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员