Refining low-resolution (LR) spatial fields with high-resolution (HR) information, often known as statistical downscaling, is challenging as the diversity of spatial datasets often prevents direct matching of observations. Yet, when LR samples are modeled as aggregate conditional means of HR samples with respect to a mediating variable that is globally observed, the recovery of the underlying fine-grained field can be framed as taking an "inverse" of the conditional expectation, namely a deconditioning problem. In this work, we propose a Bayesian formulation of deconditioning which naturally recovers the initial reproducing kernel Hilbert space formulation from Hsu and Ramos (2019). We extend deconditioning to a downscaling setup and devise efficient conditional mean embedding estimator for multiresolution data. By treating conditional expectations as inter-domain features of the underlying field, a posterior for the latent field can be established as a solution to the deconditioning problem. Furthermore, we show that this solution can be viewed as a two-staged vector-valued kernel ridge regressor and show that it has a minimax optimal convergence rate under mild assumptions. Lastly, we demonstrate its proficiency in a synthetic and a real-world atmospheric field downscaling problem, showing substantial improvements over existing methods.


翻译:以高分辨率(HR)信息重新界定低分辨率(LR)空间域,通常称为统计缩放,这具有挑战性,因为空间数据集的多样性往往阻碍直接匹配观测。然而,当LR样本以全球观测的介质变量为模型,作为总有条件的HR样本样本,模拟全球观测的介质变量时,可将潜在的细微微粒场的恢复归类为“反”有条件期望,即调制问题。在这项工作中,我们提议一种巴耶斯式的调制配方,自然恢复Hsu和Ramos(2019年)的最初再生产内核Hilbert空间配方(Hilbert)的初产(Hilbert)空间配方。我们将调制扩大到降尺度的设置,并设计出高效的有条件嵌入多分辨率数据的手段。通过将有条件的预期作为基础字段的内在特征,可将潜在场的外表设定为“反”有条件的预期,即调制问题。此外,我们表明,这一解决方案可以被视为一种分层矢量级的矢量内脊向后退器,并表明,在温化的场中展示了一种真实的高度的合成方法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
26+阅读 · 2018年11月1日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【强化学习炼金术】李飞飞高徒带你一文读懂RL来龙去脉
黑龙江大学自然语言处理实验室
3+阅读 · 2018年1月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
26+阅读 · 2018年11月1日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【强化学习炼金术】李飞飞高徒带你一文读懂RL来龙去脉
黑龙江大学自然语言处理实验室
3+阅读 · 2018年1月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员